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A digital computer designed for Fourier synthesis is described, which is the mechanical analogue 
of the usual strip methods. Suitable gear ratios are employed to generate the sine and cosine func- 
tions and the outputs are recorded by means of printing revolution counters. The machine is built 
for high-speed working and two-figure and three-figure coefficients (2' values) can be set in a few 
seconds. It does not demand any skill or training on the part of the operator. As only complete 
revolutions of the output shafts are counted, backlash errors are unimportant. The gear ratios are 
selected to produce a maximum error of less than 5 parts per million with an average error of about 
1 per million, so that five-figure accuracy is possible. 

Introduction 

Many computers, both analogue and digital, have been 
designed for Fourier operations. Analogue machines 
are generally of rather low accuracy, unless made with 
extreme precision and at great cost. Digital machines 
of the punched-card type are also costly, require a 
great deal of space, and demand skill and training on 
the part of the operator. Modern electronic computers 
have similar disadvantages for the crystallographer 
and usually lack storage space for Fourier operations. 
There is, therefore, need for a more compact device. 

The digital computer now designed is non-electrical, 
apart from the initial drive, and works by simple direct 
gearing, from the input feed to the output printing 
counters. I t  is the mechanical analogue of the usual 
strip methods, F vaIues being fed in either singly or 
simultaneously, while the summation totals are printed 
out automatically. The machine has not yet been 
completely built, but enough has been constructed to 
show that  the plan is a feasible one and that  it pos- 
sesses certain advantages in accuracy, speed and 
simplicity over other possible designs. An outline of 
some of the main features is given in the present paper. 

The Fourier operations most commonly encountered 
in crystal analysis are the evaluation of double or 
triple series for electron density and other functions, 
at large numbers of points in the unit cell. Such multi- 
dimensional series can generally be expanded and the 
numerical work put in the form of a large number of 
summations of single Fourier series. For example, 
the common double series 

c o  

Q(x, y) = ~ Fhk cos 2ze(hx/a+ky/b) 
- - c o  

may be expanded and put in the form 
c o  o o  

Q(x, y) = Z kA cos 2reky/b- .~ ~.B sin 2zky/b, 
- - c o  --CO 

the coefficients A and B being themselves derived from 
the sums 

c o  c o  

hFh~ cos 2rehx/a and • hFhk sin 2~hx/a. 
- - c o  - - c o  

The present machine is designed to deal with such 
summations. As in the familiar strip methods for 
numerical calculation (Beevers & Lipson, 1934, 1936; 
Beevers, 1952; Patterson, 1936; Robertson, 1936, 1948) 
we now choose some convenient interval of the axial 
length (a, b or c), in this case sixtieths, or intervals of 6 °, 
and generate sine and cosine functions at these points. 
To cover the period from 0 ° to 90 °, 15 separate genera- 
tors are required. (The symmetry of the function can 
be utilized to cover the other quadrants.) In this 
machine the results are recorded by counting the 
revolutions of 15 shafts emerging from the generators. 
These outputs are fed into a series of revolution coun- 
ters, from which the final summation totals can then 
be printed out. 

If we confine ourselves to the basic set of 15 genera- 
tors, then for the second and all higher-order terms 
in the series (h = 2, 3, 4 . . . .  ) a complicated arrange- 
ment of switching is necessary in order to convey the 
output from a given generator to the correct counter. 
I t  is a fundamental feature of the present machine 
that  all such switching is avoided. This is achieved by 
devising a very simple type of generator which can 
easily be repeated and built into its correct place for 
each term in the series. We thus have a row of 15 
generators for each term (h = 0, 1, 2 , . . . ) .  These 
rows correspond exactly to a set of Beevers-Lipson 
strips arranged for summation. The necessary coef- 
ficient, Fh, for each row is then applied by imparting 
Fn revolutions to the input shaft for each row. The 
machine and counters are capable of operating at high 
speeds (up to about 6000 revolutions per minute) so 
that  two-figure and three-figure coefficients can be set 
in a matter of seconds. As soon as all the coefficients 
have been set, the desired summation totals are re- 
corded by the output counters. 

The same basic set of 15 generators, which are 
described below, could, of course, be used in other 
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arrangements. If it were desired to employ a switching 
mechanism to convey the output from a given genera- 
tor to the correct counter, then a system of synchronous 
motors might be used (magslip or selsyn mechanisms). 
Alternatively, the generators might be used to supply 
electrical impulses which could be conveyed to im- 
pulse counters, as in the machine described by Mac- 
Ewan & Beevers (1942). However, the present purely 
mechanical arrangement appears to possess some 
advantages. 

S i n e  a n d  c o s i n e  ~ , e n e r a t o r s  

I t  is first of all necessary to generate the sine and 
cosine functions accurately and quickly at the chosen 
intervals of 6 ° . I t  has been found that  all the required 
ratios can be obtained with very ample accuracy by 
employing a simple train of four gear wheels (Fig. 1). 

8 

D 

F i g .  1 . . G e a r  t r a i n .  

If A, B, C and D are integers representing the num- 
bers of teeth on these wheels, then A/B ×C/D gives 
the ratio of the speed, or the number of revolutions, 
of the shaft of D (output) to that  of A (input). The 
problem is to find sets of integers which give good 
approximations to the desired sine or cosine factors. 
For mechanical convenience we have adopted a wheel 
range l~ng  between 21 and 70 teeth, with a tooth sum 
range between 165 and 200. 

With these limitations the 15 factors required can 
be reproduced with a maximum error of less than  
5 parts per million, and an average error of about 1 per 
million. This ensures a comfortable five-figure ac- 
curacy, which is much more than ample for the 
present purpose. 

Details of these ratios are shown in Table 1. The 
maximum error of 44 × 10 -7 occurs for sin 60 °, and this 
cannot be reduced unless the tooth sum is increased 
to more than 250, with at least one wheel of more 
than  70 teeth. There is, for example, 29/50 × 109/73, 
with an error of 20 × 10 -7, and nothing else with a 
highest prime factor of less than 181 until  a denomina- 
tor of 5000 is exceeded. A much better approximation 
to the sine of 6 ° than the one shown in Table 1 can 
be made by using one wheel of 82 teeth, viz. 20/49 × 
21/82, with an error of 12 × 10 -7, but there is l i t t le 
point in making such an improvement while the error 
for sin 60 ° remains at 44× 10-7. 

The limitations on wheel range and tooth sum range 
(~N) stated in Table 1 ensure reasonably small and 
compact generating units of fairly uniform size, and 
avoid the use of any large and expensive wheels. 
A further mechanical point worth noting is that  the 
desired ratios can be secured as indicated, without 
having a common factor in the tooth numbers of any 
mating pair. This is certainly advantageous if the gears 
used are not of the highest quality, the provision of 
such 'hunting teeth'  ensuring uniform wear over the 
whole wheel. 

The writer obtained most of the ratios shown in the 
table by a simple arithmetical procedure, with the help 
of a fast electric calculating machine. But to prove that  
these are the best possible ratios is a mat ter  of con- 
siderable difficulty. A systematic examination of the 
problem, however, has now been carried out by  Mr 
T. H. O'Beirne, to whom the writer is indebted for 

Table 1. Gear ratios for sine and cosine generators 

W h e e l  r a n g e  2 1 - 7 0  t e e t h ,  40  d . p .  

T o o t h  s u m  ( I N )  r a n g e ,  1 6 5 - 2 0 0 .  

A a v .  

A C 
S i n  C o s  ~ x 

6 ° 84 ° ~-~ X ~ ' 

12 ° 78 ° oo ~s -~g- x To 
18 ° 72 ° -~-~- X~- r''~- 

240 660 .q 1 .q :~T X ~o- 
30 ° 60 ° so 48 ~-ff X ~- o 

36 ° 54 ° -}-,} x ~-,} 
42 ° 48 ° .~ ~ ~7 y g X  5~ 

48 ° 42 ° 4 t 4 ,  

54  ° 36 ° 4 r 4o zl:~ X -6T  

60 ° 30 ° .q 7 s s ~ E  X ~-~ 

66 ° 24 ° 41 ~r~- x ~ 
72 ° 18 ° _a_TXv~..~8 4s 

78 ° 12 ° .~X~.,z4o ~7 
84 ° 6 ° s 8 ~ .q ~ i  X ~--~a" 

= 13 X 10 -7 ,  Amax" = 44 × 10 -7 .  

= ~ o -  = 0 . 1 0 4 5 2 4 9  

---- ~ %  = 0 . 2 0 7 9 1 2 1  

l l s ,  - -  0 " 3 0 9 0 1 6 4  -g-6- B- 0 - -  

1147 _ 0.4067876 
= Y-g-fi-6 - -  

= ½ = 0.5000000 
_ _  1 2 2 ~  __  - -  ~-~Tq - -  0 . 5 8 7 7 8 2 6  

15s9 __ 0 . 6 6 9 1 3 0 4  

~--~-± 0 . 7 4 3 1 4 7 7  2 2 6 2  

1974 _ 0 " 8 0 9 0 1 6 4  ---- ~ - ~ . ~ .  

_ ~, a 6 0 " 8 6 6 0 2 1 0  

_~05o = 0"9135472  

__ , v , o  - -  0 "9510567  
- -  T V g - - - g  - -  

_ , s s o  _ 0 " 9 7 8 1 4 7 8  
- -  T W Y f f  - -  

_ x6a4 _ 0 "9945222  

T r u e  v a l u e  

0 . 1 0 4 5 2 8 5  

0 . 2 0 7 9 1 1 7  

0 - 3 0 9 0 1 7 0  

0.4067366 
0"50OO0O0 

0 " 5 8 7 7 8 5 3  

0 . 6 6 9 1 3 0 6  

0 . 7 4 3 1 4 4 8  

0 " 8 0 9 0 1 7 0  

0 . 8 6 6 0 2 5 4  

0 . 9 1 3 5 4 5 5  

0 - 9 5 1 0 5 6 5  

0 . 9 7 8 1 4 7 6  

0 . 9 9 4 5 2 1 9  

A x 107 

- - 3 6  

+ 4  

- -  6 

+ 9  
0 

- - 2 7  

- -  2 

+ 2 8  

- -  6 

- - 4 4  

+ 1 8  

+ 2 

+ 2 

+ 3  

I N  

176 

200  

189 

175 

176 

169 

180 

179 

190 

196 

186 

172 

180 

165 
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h =  0 

h =  2 

h =  4 

h =  6 

h =  8 

h =  10 

h =  12 

h =  14 

0 (o) = o 

R 

90 

90 

6 

R 

90 

78 

90 66 

90 54 

90 42 

90 30 

90 18 

90 6 

Table 2. Arrangement of sine and cosine generators 
E v e n  cosines (p) 

12 18 24 30 36 42 48 54 60 66 

R R R R R R R R R R 

90 90 90 90 90 90 

66 54 42 30 18 6 

42 18 6 3-0 54 7-8 

18 18 54 90 54 18 

5-4 7-8 3-0 18 66 

30 90 30 30 90 30 

54 54 18 90 18 54 

78 18 66 30 54 42 

90 90 90 90 

1-8 3---0 4-2 

7--8 5-4 3---0 

18 54 90 54 

66 18 30 78 

30 90 30 30 

54 18 90 18 

42 54 30 66 

72 78 84 90 

R R R R 

90 90 90 90 

54 66 78 90 

18 42 66 90 

18 18 54 90 

5-4 6 42 90 
_ _  

90 30 30 90 

54 54 18 90 

18 78 6 9--0 

h =  1 

h =  3 

h =  5 

h =  7 

h =  9 

h = l l  

h =  13 

h =  15 

o.(o) = o 

R 

90 

90 

90 

90 

90 

90 

90 

90 

Odd cosines (q) 

6 12 18 24 30 36 42 48 

R R R R R R R R 

84 78 72 66 60 54 48 42 

72 54 36 18 18 36 54 

60 30 30 60 90 60 30 

48 6 36 78 60 18 24 66 

36 18 72 54 54 72 18 

24 4-2 7-2 6 60 54 1-2 7-8 

12 6--6 3--6 42 60 1-8 8--4 
90 90 90 90 

54 60 

/¢ R 

36 30 

72 90 

30 

72 30 

36 90 

36 30 

72 30 

9O 

66 72 78 84 

R R R R 

24 18 12 6 

72 54 36 18 

60 90 60 30 

12 54 84 42 

36 18 72 54 

84 18 48 66 

48 54 24 78 

90 90 

90 

h =  1 

h =  3 

h =  5 

h =  7 

h =  9 

h = l l  

h =  13 

h---- 15 

o(o) = o  
Odd sines (r) 

6 12 18 24 30 36 42 48 

R R R R R R R R 

6 12 18 24 30 36 42 48 

18 36 54 72 90 72 54 36 

30 60 90 60 30 30 60 

42 84 54 12 30 72 66 24 

54 72 18 36 90 36 18 72 

66 48 1-8 8--4 3-0 36 78 12 

78 24 5--4 4--8 30 72 6 8-4 

90 90 90 90 

54 60 

R R 

54 60 

18 

90 60 

18 60 

54 

54 60 

18 60 

9O 

66 72 78 84 

R R R R 

66 72 78 84 

18 36 54 72 

30 30 60 

78 36 6 48 

54 72 18 36 

6 72 42 24 

42 36 66 12 

90 90 

90 

R 

9O 

9O 

9O 

9O 

9O 

9O 

9O 
9O 

h =  0 

h =  2 

h =  4 

h =  6 

h =  8 

h =  10 

h =  12 

h =  14 

0 (°) = 0 

E v e n  sines (s) 

6 12 18 24 30 36 42 48 

R R R R R R R R 

12 24 36 48 60 72 84 84 

24 48 72 84 60 36 12 12 

36 72 72 36 36 72 72 

48 84 36 12 60 72 24 24 

60 60 60 60 60 60 

72 36 36 72 72 36 36 

84 12 72 24 60 36 48 48 

54 60 

R R 

72 60 

36 60 

36 

72 60 

6O 

72 

36 60 

66 72 78 84 

R R R R 

48 36 24 12 

84 72 48 24 

36 72 72 36 

12 36 84 48 

60 60 60 

72 36 36 72 

24 72 12 84 

90 

much helpful advice in this and other connexions. On 
his author i ty  it is possible to state tha t  better ap- 
proximations than those shown in the table cannot be 
obtained without doing one or more of the following: 
(i) exceeding 200 for the tooth sum, (ii) reducing the 
smallest wheel from 21 teeth to below 16 teeth, (iii) 
increasing the largest wheel from 70 to above 81 teeth. 

G e n e r a l  a r r a n g e m e n t  o f  t h e  c o m p u t e r  

The general lay-out of a Fourier synthesizer employing 
these sine and cosine generators will now be briefly 
described. Representing the basic generators by the 
angles for which they develop the sines, the required 
arrangement of the sine and cosine banks of generators 
is shown in Table 2, where R indicates a revolution 
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counter. For reasons mentioned later, it is desirable 
at this stage to separate the odd and even terms 
(h odd and h even). The generators are coupled hori- 

59 O 

37 

(a) (b) 

Fig. 2. (~) Single generator unit. (b) End view of generator 
for sin 60% showing gear train. 

zontally in rows by means of the input shafts, these 
shafts being driven, at the end of each row, by small 
reversing electric motors. At the other end of each row 
there is a small, non-printing revolution counter (not 
shown in Table 2) to record the input. The desired 
coefficients can be rapidly run up on the motors to 

near the correct values, the last few revolutions being 
effected more slowly, or by hand if desired. For 
negative coefficieflts, the motors are run in reverse. 
The input shafts are coupled to the generators through 
bevel gears, shown on the lower left-hand side of 
Fig. 2(a). If a generator is required to deliver a 
negative rotation, as indicated by a bar over the angle 
number in Table 2, then the bevel on the output 
shaft is merely set to engage with the opposite face 
of the bevel emerging from the generator (Fig. 2(a)). 

On the output side the generators are coupled in 
columns (vertically in Table 2), the final output going 
into the printing revolution counters marked R. These 
record the summation totals at the axial intervals ( 0 )  
of 0% 6 °, 12 °, . . . ,  90 °. While the horizontal input 
shafts are permanently coupled through the bevel 
gears to all the generators in any one row, it is not 
possible to have the same type of fixed coupling of the 
output shafts to all the generators in any one column. 
This is because the successive generator output shafts 
will be revolving with different speeds and these out- 
puts must be added; or, more usually, if the coefficients 
are being fed in one at a time, one generator in each 
column will be delivering an output, while the other 
generators in the same column are stationary. The 
ideal form of coupling between the generators in each 
column is a simple differential gear, as shown in the 
upper part of Fig. 2(a). This permits any rotation of 

A B 

m 

12E i 

A B 

p + q - r -  s p - q - r  + s 
ip 1, 

p-q+r -s  p+q+r+ s 

~-q  

r +5  

l 
. P + q  ! 

la) 

rf_s 

0 1 2 3 i n .  
l • I , | . I 

D C 

D C 

A B C D 

...o~:... 

:@:0 

. .( o ) . 3 . 0 . . .  
o .  , . ~ . . ~ - - . . ~ . .  

60( 0 ) 

(~ o )30 

( o )40  
: : ~ : : : :  

i o 160 

B 

A 

6.0.( o I. .0..0I o 1 

o )65 ~_ .0  (o)40 
/ 

o 16(] : : \  

i c o 

Fig. 3. (a) Totalizer uni t  for combining sub-totals. (b) E n d  view of gearing in totalizer unit .  
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15' 13 

" J J ~  counters - - ~ ' - j  

• . - - s  P-" h ' - -0  
Sine generators • • 

1. 171. 1. 13. Tota,,zers q_. 
Cosine generators - 

l el 

f 

14 

0 6 in. 
I , , , , , I  

Fig. 4. Diagrammatic view of computer. 

the output shaft to be transmitted through the gear, 
which at the same time adds on any additional rota- 
tion derived from the generator itself. With this 
arrangement any one coefficient may be fed in in- 
dependently of the others, or any number of coeffi- 
cients may be fed in simultaneously. 

There are, however, some practical difficulties in 
this arrangement. If a number of differentials are 
coupled together in the manner indicated, the back- 
lash of the gears is considerable. This is not really a 
serious matter, because as we are only concerned with 
counting complete revolutions it will at most lead to 
an uncertainty in the last unit of the summation total. 
A more serious matter is that  in order to ensure smooth 
running without undue load, the differentials must be 
made with some precision, with accurate alignment 
and good bearings for the half-shafts. Accuracy of this 
order is not an essential requirement in any other 
part of the mechanism, and it tends to add unduly to 
the cost. 

Another arrangement, which we are now adopting 
in the latest version of the machine, is to engage 
successive rows of generators (Table 2) with the output 
shafts one row at a time, the remaining rows being 
meanwhile disengaged. This involves a clutch mecha- 
nism, which is most easily achieved by mounting the 
idle shaft of the generator (Fig. 2(a)), which carries 
the wheels B and C, epicyclic with the driven shaft 
carrying wheel A. In this way wheel C can be engaged 
or disengaged from D by a simple movement, coupled 
with a self-locking device. The output shafts are then 
continuous all the way to the counters, and the wheels 
D are permanently fixed to them. 

This arrangement abolishes the need for differentials 
between the generators, and it involves no particular 
difficulty in construction. I t  means that  one simple 
movement of a lever is necessary before feeding in each 
coefficient, and that  the coefficients in each bank must 
be introduced one set at a time. This is not a serious 
disadvantage, especially as the method of combining 
the summation sub-totals (described below) ensures 
that  each of the four banks of generators can be 
operated simultaneously or independently. I t  follows 
that  single coefficients in each of the four sets can be 
fed into the machine independently. This is ample for 

any practical need, and enables up to four operators 
to work on the machine at the same time, each 
operator entering successive coefficients in one of the 
four sets. 

Combination of sub-totals  

The final value for the electron density or other func- 
tion at each point in the unit cell is, of course, obtained 
by combining the summation sub-totals obtained from 
the four banks of generators shown in Table 2. If we 
are summing a single Fourier series in the general form 

•A cos hO + Z B  sin hO 

and represent the sums involving even cosines, odd 
cosines, odd sines and even sines by p, q, r and s 
respectively, then by the symmetry of the functions 
we have the well-known relations: 

sum at 0 = p + q + r + s  , 
sum at 180°-0 = p - q + r - s ,  
sum at 180°+0 = p - q - r + s ,  
sum at 360°-0 = p + q - r - s .  

If we are dealing with an expanded double Fourier 
series the final form will generally be 

ZA cos h O - • B  sin hO, 

and provision must be made for the change of sign, 
either by entering coefficients with reversed signs or 
in some other manner. 

If the four banks of generators are operated as in- 
dependent units, as shown in Table 2, it will then be 
necessary to combine the p, q, r and s totals in ac- 
cordance with the above relations in order to evaluate 
the function at every point over the complete period• 
This involves a fairly large amount of tedious arith- 
metical work. In the present machine this combination 
of sub-totals is carried out automatically, and only 
the final results are printed out. 

This is achieved by placing between the banks of 
generators a set of totalizing units, one of which is 
illustrated in Fig. 3. I t  consists essentially of four sets 
of coupled differentials. The coupled pairs at each 
end of the unit produce the following sums and 
differences" 
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(p+q), (p-q),  (r+s), ( r - s ) .  

The two coupled pairs in the interior of the unit then 
act on these rotations to produce the further sums 
and differences: 

[(p+q)+(r+s)], [(p+q)-(r+8)], 
[(p-q)+(r-s)] ,  [ ( p - q ) - ( r - s ) ] .  

These are the combinations required to effect the sums 
at the points 0, 360°-0,  180°-0, and 180°+0. The 
output shafts carrying these rotations then go directly 
to the printing counters. 

In the second case mentioned above, where we are 
dealing with an expanded double Fourier series, we 
may neglect the negative sign of B and enter the signs 
positively, provided that  the signs of r and s are in 
effect reversed in the mechanism. This is carried out 
by merely reversing the directions of rotations of all 
the sine generators, and is the mode of operation 
which would usually be employed in crystal-analysis 
work. 

In assembling the complete machine (Fig. 4) it is 
convenient to arrange the banks of generators for odd 
and even terms vertically over each other, and the 
sine and cosine generators on either side of the central 
totalizing units. The printing counters for the final 
outputs are then located above the totalizing units, 
in a central position. These counters can each be 
supplied with an independent paper feed, because this 
is the most convenient arrangement when dealing 
with a lengthy double synthesis. If, for example, the 
machine has to produce an array of 1800 summation 
totals over a certain projection area containing a 
centre of symmetry, then one axis may be sub- 
divided into 60 parts, which are dealt with simul- 
taneously by the 60 counters. If the other axis is 
divided into 30 parts, this requires 30 cycles of opera- 
tion by the machine, and the final results are con- 
veniently produced on 60 strips of paper, each carry- 
ing 30 totals in correct order. 

As shown in Table 2 and Fig. 4, the machine has 
generators designed to handle terms up to the fifteenth 
order (h = 15). Terms of higher order ( h - - 1 6  to 
h = 30) can be handled by using the same generators 
with the directions of rotation in every second column 
(Table 2) reversed. Thus, for h = 16 the cosine genera- 
tors required are 

90 6 78 18 66 30 54 42 42 54 30 66 18 78 6 90. 

These arc the same as for h = 14 with reversed sign 
at every second generator. This feature has not yet 
been fully developed, but a simple method would be 
to arrange for the clutch mechanism previously 
described to operate first on the 1st, 3rd, 5th, . . .  
generators in a given row, then on the 2nd, 4th, 6 t h , . . .  
generators. The coefficient would be fed in positively 
for the first position, and negatively for the second 
position. Although more fully automatic and speedy 
methods for dealing with high-order terms can be 
devised, this slightly more lengthy procedure would 
not cause much inconvenience because terms of higher 
order than 15 occur rather infrequently. 

In conclusion, I have pleasure in acknowledging 
the many helpful and stimulating discussions I have 
had with Mr T .H.  0'Beirne, of Messrs Barr and 
Stroud, Ltd, in connexion with this project. 
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